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A b N a e L  We presenl a new analytical approach Io lhe Coulomb glass problem m 
one dimension, using the Bethe-Peierls-We& (BPW) approximation. The single-panicle 
density of sates (00s) at zero temperature is calculated analytically; it has a soft 
Coulomb gap at the h i  energy. ?he selfconsistency condition used within the BPW 
scheme influenoes the calculated DOS. We discus the WO possible limiting oses for 
the selfsonsimency mndition which give an upper and a lower b u n d  of the DOS. nte 
upper limit yields a ws similar IO that following from the self-consistent quation of 
Eims @(e) - l/ln(fo/r)X. the lower limit gives a power-law Coulomb gap near the 
Fermi energy @(a) - P, where ti b proportional to the relative interaction strength). 
The mulls are compared wilh numerical simulation data and with Lhe results of the 
selfconsisten1 equation of Efras. 

1. Introduction 

The role of the Coulomb interaction in disordered systems with strongly localized 
electronic states has been investigated for about 20 years (Pollak 1970, Srinivasan 
1971). Although there has been much controversy about this problem, today it is 
generally accepted that the long-range unscreened Coulomb repulsion between the 
electrons in localized states reduces the single-particle density of states (DOS) near 
the chemical potential 1.1 (Efros and ShkJovskii 1985, Pollak and Ortuno 1985, Pollak 
1992). At zero temperature it is expecred that the Dos is zero at the Fermi energy; 
however, it is finite at every energy different from the Fermi energy. This soft 
gap is called Coulomb gap. The depletion of single-particle excitations near the 
Fermi energy certainly influences the transport properties of the of the systems under 
consideration. Much experimental work (for instance on the hopping conductivity of 
amorphous or doped semiconductors) deals with this question. However, the results 
of these investigations are far from providing a coherent picture (Redfield 1973, 
'Ibkumoto ef al 1982, Benzaquen and Wlsh 1984, Timp er 01 1986, White el al 1,986, 
li-emblay er af 1989, B a n g  1990, Zhang er a1 1990). 

In 1975 Efros and Shklmkii proposed a simple model, the Coulomb glass (or 
Efros model) which has been the basis for theoretical investigations of the Coulomb 
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gap problem until now (Efros and Shklovskii 1975, Efros 1976). It consists of 
localized electrons at the sites of a lattice which interact via an unscreened Coulomb 
interaction. Hopping terms between different sites are neglected. The disorder of 
the system is described by a fluctuating potential at the lattice sites. The Coulomb 
glass is equivalent to an king model with long-range antiferromagnetic interactions 
in a fluctuating magnetic field (Davies et 01 1982, 1984). In principle, all eigenstates 
of the system are known For a fixed configuration of the random potentials. They are 
characterized by the occupation of the lattice sites. Owing to the interplay between 
the unscreened Coulomb interaction and disorder, the search for the ground state 
h a difficult many-particle problem; however, standard many-body methods are not 
suitable for this problem. 

If the Coulomb interaction U,  between neighbouring sites is large in comparison 
with the strength W, of the fluctuating potential, the ground state is completely 
'antifemmagnetic'. However, we are even interested in the opposite situation 
U$ > U,. In this case the occupation of a site with a small potential depends 
very sensitively on the configuration of all other sites. Because of the competition 
between interaction and disorder, frustration occurs. 

Efros and Shklovskii used the stability condition of the ground state against single- 
panicle hops to derive a self-consistent equation (SCE)  for the single-particle DOS at 
zero temperature (strictly speaking an equation for an upper bound of the DOS). The 
equation can be solved analytically close to the Fermi energy. The calculated Dos 
behaves as le - .uld-' for the ddimensional system (d = 2,3). Later the stability 
of the ground state against many-particle hops was included in the derivation of the 
SCE (Barano~skii el a[ 1980). Raikh and Efros (1987) applied this equation to the 
one-dimensional system The Dos behaves as 
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l / l n [ d ( c  - P ) I .  
Besides this analytical approach there are several numerical simulations of the 

Coulomb glass based on the stability of the ground state against single-particle 
hops (Baranovskii et 01 1979, Davies et a1 19S2, 1984, Mobius and Richter 1987a, b, 
Mobius el a1 1992) or based on the numerical solution of local mean-field equations 
(Griinewald er al 1982, 1983). The numerical simulations confirm the idea of a 
Coulomb gap in the single-particle DOS bur the quantitative results differ from each 
other. 

In this paper we investigate the Coulomb glass within the Bethe-Peierls-Weiss 
(BPW) approximation (Bethe 1935, Peierls 1936, Domb 1960). This method is a 
generalization of the mean-field approximation and it is suitable for treating the long- 
range Coulomb interaction. The Coulomb glass model is introduced in section 2 The 
BPW approximation scheme is discussed in section 3; the results for the single-particle 
DOS are presented in section 4. The analytical results are compared with numerical 
simulation data in section 5. The calculated DOS, the validity of the approximation 
scheme and possible generalizations are discussed in section 6. 

2. The Coulomb glass model 

We consider a onedimensional lattice with a lattice consrant a and electron wirh 
the charge -e per site. 'b preseme charge neutrality, each site has a compensating 
charge ;e. 
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The Hamiltonian of the one-dimensional Coulomb glass is given by 

where the spin variable Si = &; describes the occupation of the site i (with a charge 
of *;e). The random potentials ‘pi are independent of each other; they fluctuate 
Owing to a probability distribution W’(p;). The properties of the Coulomb gap do not 
depend on the exact form of the distribution, provided that it is only slowly varying 
near the chemical potential p (which is zero in our model because it is particlehole 
symmetric). We use the probability distribution 

The width WO of the distribution is assumed to be large compared with the interaction 
energy U, = e2/a of nearest neighbours. The. single-particle excitation energies ci  
are defined by 

ci = 1p; t (3) 
j 

Because of the interaction terms in equation (3) the excitation energy depends on 
the occupation of all sites of the system. 

The DOS for the single-panicle excitations 

is the quantity under consideration in this paper. (.) denotes the thermodynamic 
average for a given configuration of the random potentials. g(6) is symmetric with 
respect to the Fermi energy cF = 0 because the model is particle-hole symmetric. 

3. The Bethe-Peierls-Weiss approximation 

The BPW approximation (Bethe 1935, Peierls 1936, Domb 1960) is an improvement of 
the simple mean-field approximation. First it was applied to spin models with short- 
range interactions and without disorder. In recent years it has also been used to study 
disordered models with short- and long-range interactions such as spin glasses (Klein 
et a1 1979, Schowalter and Klein 1979). 

One obtains the BPW Hamiltonian by exactly taking into account the interactions of 
a spin So (central spin) with all other spins Si (boundary spins). The boundary spins 
interact only with an effective mean field. An additional self-consistency procedure 
for the effective mean fields must ensure that all sites are physically equivalent. The 
BPW Hamiltonian of the one-dimensional Coulomb glass is given by 
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With 
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ti = 'Pi + Uij(Sj)i. 
j # W  

Now the partition function Z,, and the conditional thermodynamic means (Si)so for 
a k e d  central spin Su and for p = 0 can be calculated exactly by means of the 
stochastic map method (Rujan 1978, Bruinsma 1983) as a function of the effective 
fields ti. Within this method, one carries out the sums over the boundary spins 
(arising in the partition function and the thermodynamic means) and rewrites the 
cosh terms obtained as exponentials. For the partition function Zso we obtain 

where the functions A and B are given by 

A ( F , W  = (]/@)In {cosh [$(t - +U)] /cosh [ $ P ( t +  $U)]} 
(8) 

B ( < , U )  = -(1/2P)In{4cosh [ i P ( t  - $U)]cosh + + U ) ] } .  

From (7) it follows that the quantities A(Ei ,U, )  describe the contribution of the 
boundary sites to the thermodynamic field h, of the central spin S,. Using the 
definition 

(S,) = -5 mnh ($Ph,) Q) 
we obtain the following equation for / I , :  

We note here that the thermodynamic local field h, is different from the single- 
particle energy E,. While cu describes the change in the system energy if Su is Ripped 
and the other spins are fixed, h, includes relaxation effects of the other spins if S,,is 

The probability distribution glh of h, may be written as a convolution integral: 
flipped. 

gtdhu) = d'Pu W'PU) /"U dE; P(E1 I . . . F N ) ~  (hO - 'PO - A(Cj )) (11) J i 

where P(t , ,  . . . , E N )  is the distribution of the effective fields. The conditional 
thermodynamic means ( ~ 7 ~ ) ~ ~  are given by 

{S;),=-~mnh[5P(E;+tU,sgnS,)] .  (12) 

In the following we restrict our calculations to the zero-temperature limit. Then the 
thermodynamic mean (12) becomes the ground-state value of Si: 

(13) Si=-2sgn  1 [ ; ( ~ ; + i ~ , s g n ~ , ) ] .  
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Using equations (3) and (IO) and the definitions 

C(C> UG 7 s,) = Si - 4 E ; ,  
1 (14) 

C(ti,U,) = C(Ei ,UUi , - -~ )  

the single-particle energy ei may be witten in terms of the quantities h, and ti: 

The physical meaning of this equation is as follows. The difference between the 
singleparticle excitation energy and the thermodynamic local field of the site 0- 
which is the reason for the Coulomb g a p i s  caused by the spins Si, which flip when 
the spin S, is flipped. These spins are always antiparallel to S,, which means that 
they do not contribute to the thermodynamic field h,; however, they do contribute 
to the single-particle excitation energy e,. 

The DOS (4) may be written in the form of a convolution integral: 

In the following we study the form of the Coulomb gap for /.$I < U,. In order to do 
this we need the probability distribution function P ( C l ,  . . . , e N )  of the effective fields. 
Within the BPw scheme there is no direct way to derive this distribution function. The 
only condition which has to be fulfilled by the distribution function P(e , ,  . . . , EJv) 
is that the central site and the boundaly sites have to be equivalent. Comparing 
the equations for the single-particle energy E ,  (equation (4)) and for the effective 
fields (equation (6)), one may identify e with the single-particle excitation energies. 
On the other hand a comparison of equations (9) and (12) for the thermodynamic 
mean values of S, and Si shows an equivalence of the effective fields and the 
thermodynamic field h,. Within the BPW approximation, one cannot resolve this 
question; it is typical of mean-field equations (6) that they do not allow one to 
distinguish between single-particle excitation energies and thermodynamic local fields. 

Another important question is whether correlations between the effective fields ti 
at different sites play an essential role in the calculations. Certainly the assumption 
that the ti are statistically independent of each other is not strictly valid. The 
long-range Coulomb interaction prefers antiparallel nearest-neighbour spins and 
causes correlations between the ti. The contribution of the boundary sites to the 
thermodynamic field h, (equation (10)) is therefore limited fo a value of the order 
of the Madelung energy. Thus the distribution of the thermodynamic field h, differs 
only at the edges from the distribution function of the random potentials, provided 
that we are in the limit of weak interaction U, Q WO. In particular, grh( h,) has no 
gap and varies only slowly near the Fermi energy eF = 0. ?b calculate the asymptotic 
behaviour of the DOS for c - 0 we need only the value g,,,(O) at the Fermi energy. 

How do the correlations influence the calculation of g(c)? Because C((, U) is 
always positive, correlations cannot strongly influence the results. 'That is why we 
assume the ti to be independent of each other in the following calculations of g(~): 
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The two possible self-consistency conditions discussed above may be witten as 
P([)  = glh(() (if one identifies the effective fields 6 with the thermodqnamic fields 
h) and P ( ( )  = g(E) (if one identifies E with the single-particle energy E ) .  

Th Vojfa and W John 

4. Single-particle density of states 

We have to calculate g ( c )  from the convolution integral (16) and equation (17): 

Because of the symmetry of the problem we restrict the following calculations to the 
case e > 0. The function C(C, U) is approximately given by 

Therefore the sites i with U, > 2e canrribute to g ( e )  only if C = 4 this means if 
21E;[ > U,. Thus g ( ~ )  may be written as 

The mlue of the second integral may be estimated by calculating the mean d u e  and 
the mean square deviation of the integrand. Provided that P(<) is constant near 
the Fermi energy or decreases for e - 0, the mean is of the order of eU,P(O) or 
smaller; the mean square deviation is of the order of e2UUP(O) or smaller. In the 
limit of small interaction strength LJuP(0) < 1 the second integral therefore yields 
the mlue 1. The Dos k now given by 

In the following we want to give the resula for the single-particle DOS g (  e) for 
the two possible choices for P([). 

If one identifies the distribution P ( t )  with the distribution of the thermodynamic 
field gth(hu) the (-integrals may be calculated in a straightforward manner. This 
yields 

The sum in equation (22) is essentially a sum 
One obtains a power-law Coulomb gap of the single-particle DOS: 

l/i and can be easily calculated. 

9 ( e )  = 9 , ( 0 ) ( 2 1 ~ l / ~ " ) "  ( K  = 29th(O)Uu,e < (io). (23) 
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The other self-consistency condition, which means the identification of P with the 
single-particle DOS, leads to an integral equation for the DOS: 

Now the sum may be aansformed into an integral and the two integrations in the 
resulting equation are interchanged. "king the logarithmic derivative with respect to 
e, one obtains a simple differential equation in the asymptotic case e -, 0 

g'(e)/g(e) = 2(U"/E)S(E). (25) 

d e )  = (1/2U")[l/ln(Li"/2lel)l ( E  K U"). (26) 

The DOS has a logarithmic Coulomb gap: 

Obviously this logarithmic gap is narrower than the power-law gap from above, 
because a smaller number of boundary spins have effective fields between -U/2  
and U/2 (P(E) has a gap near the Fermi energy in this case) and therefore fewer 
boundary spins contribute to the difference between h, and ew 
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The resulting curves are presented in figure 1 for different values of U,/W, 
together with the results of a numerical simulation of the onedimensional model. 
For a detailed discussion of these two results see section 6. 

5, Numerical simulation 

There are very few numerical simulation data for the one-dimensional lattice model 
(Mobius and Richter 198%). Besides that, these simulations are in a parameter 
region of V,/W, - 1, where our BPW approximation is not valid. That is why we 
performed an numerical simulation of the onedimensional model in the parameter 
region LJ,/W, < 1 by the method hrst used by Baranovskii el al (1979) and recently 
by Mbbius and Richter (1987a, b) and Mdbius et 01 (1992). 

We use a one-dimensional system with 2500 lattice sites and-periodic boundaly 
conditions. The random potentials are chosen independently from the rectangle 
distribution (2). We start with a random occupation of the lattice sites and then 
stabilize the system against excitations up to single-particle hops. The single-particle 
density is calculated from the metastable ‘pseudo-ground state’ reached in this way. 
In order to minimize the statistical error, we performed the calculations for 5000 
different realizations of the random potentials and averaged the resulting DOSS. 

The resulting curves are shown in figure 1. The simulation confirms our analytical 
calculation; the simulation data are between the two possible analytical results; 
however, it cannot be decided whether g(c) follows a power law or a logarithmic 
law (Mobius and Richter found a logarithmic law in their parameter region). 

6. Discussion 

We have calculated the single-particle DOS of the one-dimensional Coulomb glass 
within the BPW approximation scheme. Depending on the self-consistency condition 
for the effective fields E;  we obtain a power-law Coulomb gap g(e) - E“ or a 
logarithmic gap g ( ~ )  - 1/ In( Uu/21el). It seems that the BPW approximation with 
the self-consistency condition P ( € )  = g ( E )  is equivalent to the SCE of Efros (1976) 
and Raikh and Efros (1987), which gives an upper bound of the DOS. Equation (21) 
allows the same interpretation as the SCE of Esros: the DOS of the ‘central’ site is 
reduced if one of the other sites has a small effective field Ei .  The SCE and our 
equation (21) yield the Same behaviour of the DOS. 

The main problem of the BPW scheme used in this paper as well as the SCE of 
Efros is that correlations between the ‘boundary’ sites are neglected, because the 
Coulomb gap is produced by the boundary spins, which flip, when the spin So is 
flipped. Within our approximation of independent ‘boundary fields’ ti, these are the 
spins Si with l(;l < +Uoi. These spins are always antiparallel to S,; on the average 
each of them contributes fV, to the difference between h, and E* If the interaction 
between the boundary spins is considered, however, a flip of the central spin S, from 
-f to +; causes a very complicated relaxation process. Some boundary spins flip 
h m  +$ to -f; this reduces the effective field of the other boundary spins. That is 
why some of them flip from -: to +f. Because the several contributions to eo may 
have different signs, this effect should reduce the difference between q, and h, and 
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therefore reduce the gap width. However, within the BPw scheme it is impossible to 
describe such a relaxation process. 

Obviously the BPW approximation with the self-consistency condition P(E) = 
gih(c) gives a lower approximation of the DOS near the Fermi energy, because on 
the one hand the distribution of the effective fields has no gap, and therefore many 
sites have small effective fields and contribute to the difference E, - h, and because 
on the other hand the BPw scheme does not account for the correlations that reduce 
the gap width. These results are confirmed by the numerical simulation of the one- 
dimensional lattice model., The simulation results for the single-particle DOS are 
beween the two BPW results. It seems that the real physics is between the two 
limiting cases of the BPW scheme, although the BPW scheme cannot describe the 
complicated relaxation process discussed above. Discussing this process remains a 
task for the future. 
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